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AIIItnet-An algorithm is derived which can be used for the calculation of coefficients in the amplitude
frequency equations for nonlinear harmonic oscillations of elastic structures using, e.g. the finite element
method.

INTRODUCTION
A basic problem in analysis of steady nonlinear harmonic oscillations of elastic structures is to
determine the dependence of the frequency of oscillation on the amplitude of vibration. In what
foUows we present an algorithm which can be used for such calculations in conjunction with
the finite element method. Although our procedure is derived from a simple application of an
asymptotic technique[l, 2], it appears to be of some interest mainly because a number of finite
element-based solutions of nonlinear oscillations problems that have appeared in recent literature
are based on a method which, as we show in the following, leads to incorrect results even for a
single degree of freedom system and, therefore, does not seem to have general validity.

NONLINEAR HARMONIC OSCILLATIONS OF CONSERV ATIVE STRUCTURAL SYSTEMS

Our purpose in this section is to present a perturbation procedure for analysis of steady,
forced harmonic oscillations of conservative structural systems with damping. Thus, we
consider the equations of motion

Mqll +Cq, + Kq + N(q) = I(e iwr +e-iw
,),

1 1
N(q)=2 Nl(q)q +3N2(q)q,

q(O) =q(21T/Cd); q,(O) =q,(21T/Cd),

(1a)

(1b)

(1c)

where K, M, and C are symmetric matrices with constant elements, denoting the structural
stiffness, mass and damping, respectively, and Cd is the frequency of the forcing function. The
matrices Nl and N2 in (1b) are symmetric and their elements are linear and quadratic functions,
respectively, of the components of q, the vector denoting the degrees of freedom of the
structure. Equations of the form (1) arise in analysis of thin elastic structures under the small
strains, moderate rotations approximation and can be formulated following the method given,
for example, in [3, 4].

To solve (1) under the assumption that magnitudes of damping and the forcing function are
small, we explicitly introduce a small parameter p., given by

C =p.,C', I = p.,1',

where C' and I' are of order unity. We further introduce nondimensional time according to

t' = Cdt.

(2)

(3)

Substitution of (2), (3) into (1) furnishes, with dot denoting derivative with respect to non
dimensional time,

AMq + Kq + N(q) + p.,[V(A)Cq - I(e i, + e- il)] = 0,

q(O) =q(21T); q(O) =q(21r),
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(4a)

(4b)
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where we have dropped the primes from C', I' and t' and have introduced the definition

(5)

Equation (4) is now in the form of a set of two-point (nonlinear) boundary value problems with
A as a parameter. When J.L =0, this set has the trivial solution for all values of A. Condition for
the existence of bifurcation points on the trivial solution branch yields the equations for the
natural frequencies and free vibration modes of the structure; to wit,

AoMii+Ku= 0

u(O) = u(2'71'); 0(0) = 0(2'71').

Equation (6) has solutions

where y is the free vibration mode satisfying the linear eigenvalue problem

(6a)

(6b)

(7)

(8)

For the purpose of this note we assume that the free vibration mode excited by the forcing
function is associated with a natural frequency such that (8) has only one linearly independent
solution. Therefore, in the space of all 2'71'-periodic vector functions, i.e., among the vector
functions of time that satisfy (4b), the differential operator

(9)

has a two dimensional null-space given by u and u.
We first note that any 2'71'-periodic vector function has the unique decomposition

(10)

In (10), a, Ii and" are defined by using the operators QN, ON and QR, thus,

(l1a)

.(11b)

(12)

where I is the identity matrix. Here w belongs to the range of the operator B, and the range is
orthogonal to the null-space spanned by u and U. with respect to the scalar product

(13)

where ". and "2 are any 2'71'-periodic vector functions and overbar denotes a complex
conjugate. As a result of the orthogonality of the range of B to the null space of the latter, any
2'71'-periodic function vanishes if and only if its components in the two spaces vanish, or,
equivalently,

(14)
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We also have the following result:

Lemma:
Let

Bx=&

lOSS

(15)

where B is given by (9), and assume that (a) g and x are 211'-periodic vector functions satisfying

If it is further assumed that (b) none of the eigenvalues of the problem

[-AM+K]z=O, zTz=I,

(16)

(17)

is of the type n2Ao, n =0,2,3,4, ... , then there exists a unique solution of (15).
An informal proof of this Lemma is quite simple. First both x and I are expanded in Fourier

series in t, i.e. we set

x x

1= 10 + ~ (gft eiftt + ift e-iftt ); x = Xo +~ (xneint + in e-int).
n=1 n=1

If these equations are substituted into (15), we obtain

(1S)

(19)

Jbviously, by virtue of the assumption (b) of the Lemma, eqn (19) is solvable uniquely for all
n¢ 1. For n = I, we note that because of the assumption (16), both XI and II are restricted to be
orthogonal to y, which is the solution of the homogeneous problem (Sa). Hence XI can also be
determined uniquely.

Application of the Lyapunov-Schmidt method[t] to the nonlinear oscillations problem
proceeds along the same lines as in other bifurcation problems. Thus, the solution is written as

(20a, b)

We now use (14) to write (4) in the equivalent form

where

dE - (A - Ao)My(a eit + ae-it)+ (A - Ao)Mw

+N[(a eit +ae-it)y+w]

+IL[V(A)i(a e it
- ae-it)Cy + Y(A)Cw - '(e it + e-it)].

(21a)

(2tb)

(22)

We have thus reduced the original problem to two sets, one in the range and the other in the
null-space of B. (Note that if d is real, which is the case for problems under consideration, only
one of the two equations (2tb) is independent.) We first solve (2ta) for w as a function of a, a,
A and IL; that this function can be obtained uniquely and is analytic is assured by the Lemma
given above and the Implicit Function Theorem. A solution adequate for many applications is

(23)
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where W(2) and w(O) are obtained from the algebraic equations

[-4AoM +K]W(2) +! Nl(y)y == 0,

Kw(O) +Nl(y)y == O.

(24a)

(24b)

These equations are obtained by substituting (23) into (21a) and (22) and requiring coefficients
of a 2, ii2 and aii to vanish. Further, substitution of (23) into (2Ib) leads to the final result

where m and c denote the usual modal mass and damping, given by

(m, c) == yT(M, C)y,

and

(== yTI,

'Y == yT[NI(y)(W(2) +w(O» +N2(y)y].

(25)

(26a)

(26b)

(26c)

Equation (25) is a (complex) nonlinear relation between the (complex) amplitude of oscillation
and the other parameters. It can be used to obtain both the amplitude and phase of the steady
state solution of (l).

It may be pointed out here that in absence of damping and the forcing function, eqn (25)
furnishes

(27a)

or

(27b)

which is the amplitude frequency equation for free-vibration of the strucuture, with A being the
(real) amplitude of oscillation of the linear free vibration mode.

Equations (23H26) are the main results of our analysis. According to these results, if there
is a quadratically nonlinear term in the equation of motion, one has to calculate the participating
modes W(2) and w(O) from (24) in addition to the free vibration mode in order to calculate the
scalar 'Y in (25) which determines the essential nonlinear behavior. Conversely, if only cubic
terms appe~ in the equations of motion, only the linear free vibration mode is needed to
calculate the coefficients in the amplitude frequency equation (25).

It is appropriate to end this note with some comments on a method which has been widely
used for the solutioR of the nonlinear oscillations problems (see, e.g. [5,6]). In our notation the
technique appears to be based on the solution of the nonlinear eigenvalue problem

using the iterative scheme

I I
Kq +2 NI(q)q +3 N2(q)q == AMq. (28)

i == 1,2" ... (29)

which defines a sequence of linear eigenvalue problems. It is not only difficult to see how (28) is
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derived from the basic problem (4) but, also, the application of (28) to the Duffing's equation

(30)

leads to the amplitude frequency equation

(31)

In contrast, the correct result, obtainable by using either our procedure or any of the classical
perturbation methods[7], contains a factor of 314 before the last term in (31). It would thus
appear that the method utilized in [5,6] is not applicable to the general nonlinear oscillations
problem for elastic systems.

REFERENCES
I. M. M. Vainberg and V. Trenogin. Thtory of Brallchillg of Solutioll of Nolllilltar Equatiolll. Nordhoff, Leyden,

Holland (1974).
2. A. Maewal and W. Nachbar, Lyapunov Schmidt method for analysis of postbuckling behavior and steady nonlinear

harmonic oscillations of elastic structures. VIII U.S. National Congress on Applied Mechanics, UCLA, 1978.
3. S. Lien, Finite element elastic thin shell pre- and postbuckling analysis. Thesis, Cornell, 1971.
4. A. Maewal and W. Nachbar, Finite element analysis of geometrically nonlinear deformation, buckling and postbuckling

behavior of cylindrical shells. Applications of Computer Mtthods in Ellgillttrillg (Edited by L. C. Wellford, Jr.,).
University of Southern California (1977).

5. J. N. Reddy and C. L. Huang, Nonlinear axisymmetric bending of annular plates with varying thickness. lilt. 1 Solids
Structul'ts 17,811-825 (1981).

6. J. N. Reddy and I. R. Singh, Large deftections and large amplitude free vibrations of straight and curved beams. Int. 1
Num. Mtth. Ellgllg. 17,829-852 (l98\).

7. J.1. Stoker, Nonlinear Vibrations ill Mechallical and Electrical Systems.1nterscience, New York (1950).


